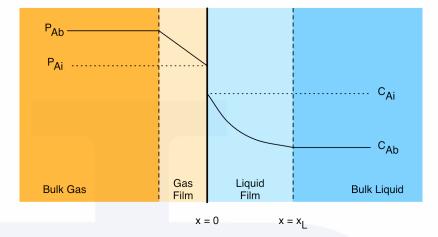
# A First Course on Kinetics and Reaction Engineering

Class 41 on Unit 38




# Where We're Going

- Part I Chemical Reactions
- Part II Chemical Reaction Kinetics
- Part III Chemical Reaction Engineering
- Part IV Non-Ideal Reactions and Reactors
  - A. Alternatives to the Ideal Reactor Models
  - B. Coupled Chemical and Physical Kinetics
    - 38. Heterogeneous Catalytic Reactions
    - 39. Gas-Liquid Reactions
    - 40. Gas-Solid Reactions



### **Two Film Model for Gas-Liquid Reactions**

- Thin films between the bulk fluid and the interface exist in each phase
- In these films mass transport occurs only by diffusion
- At the interface, x = 0, phase equilibrium is established
  - P<sub>Ai</sub> = h<sub>A</sub> C<sub>Ai</sub> (Henry's law)
- Hatta number, γ, represents rate of reaction relative to rate of diffusion
- Liquid effectiveness factor, η<sub>L</sub>, is ratio of actual rate to rate if there were no concentration gradients
- Liquid enhancement factor, ζ, is ratio of actual gas absorption rate to gas absorption rate if no chemical reaction occurred
- Definitions of γ, η<sub>L</sub> and ζ depend upon geometry, form of rate expression and other assumptions
- Expressions at right for geometry shown, reaction first order in A only, non-volatile liquid reactant B, and comparable rates of reaction and diffusion
  - Change if these conditions change
  - Often requires numerical solution



$$\gamma = x_L \sqrt{\frac{k}{D_{AL}}} = \frac{\sqrt{kD_{AL}}}{k_L}$$

$$\eta_L = \frac{1}{\gamma Sh \tanh \gamma} \left( 1 - \frac{C_{Ab}}{C_{Ai}} \frac{1}{\cosh \gamma} \right); \quad Sh = \frac{k_L}{A_v D_A}$$

$$\zeta = \frac{\gamma}{\tanh \gamma} \left[ 1 - \frac{C_{Ab}}{C_{Ai}} \left( \frac{1}{\cosh \gamma} \right) \right]$$



# **Questions?**



# Today's Activity

• Take out a sheet of paper and write down three important points from today's class





### **Gas-Liquid Batch Reactor**

- Consider a batch reactor charged with toluene (liquid) at a specified T, then admit a specified amount of Cl<sub>2</sub> (gas) and agitate vigorously
  - Assume
    - Liquid phase is continuous and perfectly mixed
    - Agitation causes formation and dispersion of  $Cl_2$  bubbles such that the number and size of the bubbles are constant, leading to a constant ratio of the interfacial area to the liquid volume,  $S_V$
    - Reaction rate and rate of diffusion of Cl<sub>2</sub> into the liquid are comparable
    - Liquid density is constant
      - Gas volume then is constant
      - Gas pressure will change due to changes in gas phase moles and temperature
  - Semi-batch reactor mole balances are used for Cl<sub>2</sub> (A) and toluene (B) in the bulk liquid volume

$$\frac{dn_{A,b}}{dt} = \dot{n}_A - V_{l,b}r(C_{A,b}, C_{B,b}, T_b); \quad n_{A,b}(0) = 0 \qquad \frac{dn_{B,g}}{dt} = \dot{n}_B - V_{l,b}r(C_{A,b}, C_{B,b}, T_b); \quad n_{B,g}(0) = n_{B,g}^0$$

- The molar flow rates are found from the fluxes evaluated at interface between the liquid film and the bulk liquid

$$\dot{n}_A = N_A \Big|_{y=y_L} S_V V_{l,b} = -S_V V_{l,b} D_A \frac{\partial C_{A,f}}{\partial y} \Big|_{y=y_L} \qquad \dot{n}_B = N_B \Big|_{y=y_L} S_V V_{l,b} = -S_V V_{l,b} D_B \frac{\partial C_{B,f}}{\partial y} \Big|_{y=y_L}$$



- The concentrations in the film, and hence the gradients are found from mole balances on A and B in the liquid film
  - The mole balances on A and B in the film are transient equations
    - The concentration profile is building up over time
    - We can make a pseudo-steady state assumption
      - Set the accumulation term equal to zero
      - Essentially this assumes that as the bulk composition changes, the gradients in the film accommodate instantaneously
  - With the pseudo-steady state assumption, the mole balances take the form

$$D_{A} \frac{\partial^{2} C_{A,f}}{\partial y^{2}} = r \left( C_{A,f}, C_{B,f}, T_{f} \right) \qquad D_{B} \frac{\partial^{2} C_{B,f}}{\partial y^{2}} = r \left( C_{A,f}, C_{B,f}, T_{f} \right)$$

Boundary conditions are needed to solve these mole balances on the film

• @ y = 0, 
$$C_{A,f} = C_{A,i} = C_{A,g} = H_A P = H_A n_{A,g} RT/V_{gas}$$
 and  $\frac{\partial C_{B,f}}{\partial y} = 0$ 

• @  $y = y_L$ ,  $C_{A,f} = C_{A,b}$  and  $C_{B,f} = C_{B,b}$ 

- In order to solve the mole balances on A and B in the film, we need values for y<sub>L</sub> and n<sub>A,g</sub>
  - Since we have made the pseudo-steady state assumption
    - the flux of A into the film minus the flux of A out of the film is the amount of A that reacted within the film
    - the flux of B into the film is the amount of B that reacted within the film
    - these two fluxes are related through the reaction stoichiometry

$$-D_{A}\frac{\partial C_{A,f}}{\partial y}\Big|_{y=0} - \left(-D_{A}\frac{\partial C_{A,f}}{\partial y}\Big|_{y=y_{L}}\right) = D_{B}\frac{\partial C_{B,f}}{\partial y}\Big|_{y=y_{L}}$$

this gives us an implicit expression for y<sub>L</sub>



• We can find n<sub>A,g</sub> from a mole balance on the gas

$$\frac{dn_{A,g}}{dt} = D_A S_V V_{l,b} \frac{\partial C_{A,f}}{\partial y}\Big|_{y=0}; \quad n_{A,g}(0) = \frac{P^0 V_g}{RT^0}$$

- Summary
  - We have a set of ODEs that we need to solve to find n<sub>B,b</sub> (which is related by stoichiometry to the moles of product) for a specified final condition (processing time, conversion of B, etc.)

$$\frac{dn_{A,b}}{dt} = -S_{V}V_{l,b}D_{A}\frac{\partial C_{A,f}}{\partial y}\Big|_{y=y_{L}} -V_{l,b}r(C_{A,b},C_{B,b},T_{b}); \quad n_{A,b}(0) = 0$$

$$\frac{dn_{B,g}}{dt} = -S_{V}V_{l,b}D_{B}\frac{\partial C_{B,f}}{\partial y}\Big|_{y=y_{L}} -V_{l,b}r(C_{A,b},C_{B,b},T_{b}); \quad n_{B,g}(0) = n_{B,g}^{0}$$

$$\frac{dn_{A,g}}{dt} = D_{A}S_{V}V_{l,b}\frac{\partial C_{A,f}}{\partial y}\Big|_{y=0}; \quad n_{A,g}(0) = \frac{P^{0}V_{g}}{RT^{0}}$$

- to solve these equations numerically, we will use an initial value ODE solver
- in addition to the initial values and the final condition we will need to provide code that evaluates the right hand side (RHS) of these equations given t, n<sub>A,b</sub>, n<sub>B,b</sub> and n<sub>A,g</sub>
  - Presumably, we know everything on the RHS of these equations except for the three partial derivatives evaluated at y = 0 and y = y<sub>L</sub>
  - To evaluate those partials, our code will need to call a mixed boundary ODE solver to solve the balance equations on the film

$$D_{A} \frac{\partial^{2} C_{A,f}}{\partial y^{2}} = r \left( C_{A,f}, C_{B,f}, T_{f} \right) \qquad D_{B} \frac{\partial^{2} C_{B,f}}{\partial y^{2}} = r \left( C_{A,f}, C_{B,f}, T_{f} \right)$$
  
@ y = 0, C\_{A,f} = C\_{A,i} = C\_{A,g} = H\_{A}P = H\_{A}n\_{A,g}RT/V\_{gas} \text{ and } \frac{\partial C\_{B,f}}{\partial y} = 0  
@ y = y\_{L} C\_{A,f} = C\_{A,b} \text{ and } C\_{B,f} = C\_{B,b}



- Our mixed boundary ODE solver will need to evaluate the film mole balances; all the necessary quantities are known
- Our mixed boundary ODE solver will also need the value of y<sub>L</sub>
  - It will need to call a non-linear equation solver to solve the stoichiometry constraint

$$-D_{A}\frac{\partial C_{A,f}}{\partial y}\Big|_{y=0} - \left(-D_{A}\frac{\partial C_{A,f}}{\partial y}\Big|_{y=y_{L}}\right) = D_{B}\frac{\partial C_{B,f}}{\partial y}\Big|_{y=y_{L}}$$

- We will need to provide a guess for y<sub>L</sub> to the non-linear equation solver along with code that evaluates the stoichiometry constraint
  - The code we provide to the non-linear equation solver will have to solve the same mixed boundary ODEs as before, but it will know the value of y<sub>L</sub>
  - ▶ It can find y<sub>L</sub> and return the value to the first mixed boundary ODE solver
- The mixed boundary ODE solver can return the values of the partials needed by the code we provided to the initial value ODE solver
- The initial value ODE solver can calculate n<sub>A,b</sub>, n<sub>B,b</sub> and n<sub>A,g</sub> versus t
- We made many assumptions; the process above can be modified accordingly
  - We accounted for the consumption of A and B in the film; if diffusion is very fast compared to reaction, we can drop the rate term from the film mole balances
  - We assumed that the reaction and diffusion rates were comparable; if reaction is very fast, we can set the concentration of A in the bulk to zero so that all reaction occurs in the film
  - We assumed A was the only species that is present in both liquid and gas, we could use nonzero Henry's law constants for B and the products, so they all appear in the gas phase
    - This will introduce the need to add a gas phase film mole balance



- > We assumed pseudo-steady state; we could account for accumulation in the film
  - Doing this would not be a trivial exercise
- The alternative is to calculate a liquid effectiveness factor or liquid utilization factor at some average set of conditions
  - Then the rate in the bulk liquid mole balances would be multiplied by this factor and analytical expressions for the partial derivatives in those balances would be used
    - these analytical expressions would be based on the average conditions, not the actual conditions in the reactor



# Where We're Going

- Part I Chemical Reactions
- Part II Chemical Reaction Kinetics
- Part III Chemical Reaction Engineering
- Part IV Non-Ideal Reactions and Reactors
  - A. Alternatives to the Ideal Reactor Models
  - B. Coupled Chemical and Physical Kinetics
    - 38. Heterogeneous Catalytic Reactions
    - 39. Gas-Liquid Reactions
    - 40. Gas-Solid Reactions

